Ζ

Advanced-Flow Reactors: Made for Industrial Productions

Marc Winter and Alessandra Vizza, Corning, France

RSC Symposium Chemspec Europe 2017 Munich, 2017 June 1st

Presentation Outline

- 1. Introduction
- 2. Seamless Scale-Up
- 3. Industrial Examples
- 4. The Challenge of Solid handling
- 5. Outlook

Presentation Outline

1. Introduction

- 2. Seamless Scale-Up
- 3. Industrial Examples
- 4. The Challenge of Solid handling
- 5. Outlook

About Corning

Founded: 1851

Headquarters: Corning, New York

Employees: 40,000 worldwide

2016 Sales: ~\$ 9;7 billion

Fortune 500 Rank (2016): 313 Corning is one of the world's leading innovators in materials science. For more than160 years, Corning has applied its unparalleled expertise in specialty glass, ceramics, and optical physics to <u>develop</u> products that have created new industries and transformed people's lives.

Corning succeeds through: sustained investment in **R&D**, a unique combination of **material and process innovation**, and **close collaboration with customers to solve tough technology challenges**.

Corning's continuous flow reactors build on the company's 160 years of innovation

History of Corning Reactor Technologies: More than one decade of expertise

A worldwide presence

Corning[®] Advanced-Flow[™] Reactor Value Proposition Revolutionary Improvement vs. Batch

Corning AFR: Unique concepts and advantages

The unique concept of a Fluidic Module

Increase throughput with similar:

- Mixing

- Heat Exchange
- Residence time distribution Mass transfer in heterogeneous systems

Comprehensive Solutions from Lab, to Process Development, and to Industrial Production

Auxiliaries – Up Stream Process

- Up Stream process is an important part of the success in Flow Chemistry
- Accuracy of the flow is a key parameters
 - Simple HPLC pumps
 - To more complex Dosing Lines
- Heat Exchanger will allow to reach full potential of Volumetric Heat transfer
- Other solution could be added such as: electrical heat tracing, safety valve, sensors, etc.

Auxiliaries – Up Stream Process

Auxiliaries – Down Stream Process

- Less critical than the up-stream process, but will allow optimisation of the global system
- Several step could be added after the reactor
- Online/Inline analytics:
 - Quick answer during development
 - Allow automatisation
 - Follow-up of critical parameter during production

*Pictures from Marqmetrix, Magritek and Zaiput

Presentation Outline

1. Introduction

2. Seamless Scale-Up

- 3. Industrial Examples
- 4. The Challenge of Solid handling
- 5. Outlook

What is really a Seamless Scale-Up?

A seamless scale-up will be achieved, when moving form a small continuous reactor, to a larger one, if you apply the same parameter as in lab (temperature, residence time, concentration, stoichiometric ratio), you will get the same result in production (conversion, yield, impurity profile...)

A seamless scale-up do not require any pilot study, nor any process optimization. It is a straightforward process, that does not require much time.

How to demonstrate a seamless scale-up???

As nearly every chemical reaction is specific (mixing or temperature sensitive, fast, exothermic or not, with concurrent reactions, parallel), making a specific reaction "seamless" does not mean at all that the scale-up will be always seamless.

Chemist to Chemical Engineering

Reactor capabilities

Reaction's need

MIXING / MASS TRANSFER

Residence Time

Contact between the molecules of the reactants

Keep the molecules in contact during a sufficient time to allow the completion of the reaction

Residence Time Distribution

Does not keep the molecules to many time in contact to avoid side reactions

HEAT TRANSFER

Isothermal condition / reaction enthalpy release

Volumetric mass transfer coefficient: A seamless scale-up

Patented HEART-shape design:

- Superior mixing performance in multiphase systems¹
- Higher performances in L/L mass transfer coefficient $(k_La)^2$
 - Up to 10³ compared to packed column
 - 2x 4x better than other "micro-channel" devices

Q = 80 mL/min

 $Q_{h} = 10 \text{ mL/min}$ $Q_{w} = 10 \text{ mL/min}$

 $Q_{h} = 10 \text{ mL/min}$ $Q_{..} = 80 \text{ mL/min}$

¹ M. José Nieves-Remacha, A.I A. Kulkarni, K. F. Jensen, **Hydrodynamics of Liquid–Liquid Dispersion in an Advanced-Flow Reactor**, *Ind. Eng. Chem. Res.* 51,16251 – 16262 (2012)

Similar mass transfer performances from lab to production

² D. Lavric, C. Cerato-Noyerie, P. Woehl, F. Zhang, Multiphase systems: Enhanced Mass fluxes in Corning[®]-advanced-flow[™] reactors, IMRET 12, Lyon, France (2012)

Heat transfer coefficient ~100x-1000x higher than batch

Seamless scale-up: similar heat transfer coefficient from G1 to G4

Method		Volumetric heat transfer coefficient (MW/m ³ K)
Ceramic SiC fluidic modules		1.5
*Corning glass fluidic modules (water/water, ~ 0.7 m/s)		1.6
*Plate (<i>metallic</i> , 4 mm spaced; water/water, 1 m/s)	1	1.25
*Shell and tubes (<i>metallic</i> ; water/water; 1 m/s)		0.2
*Batch with external heat exchanger	utility reaction medium	10-2
*Jacketed batch	reaction medium	10 ⁻³

*D. Lavric, **Thermal performance of Corning glass microstructures**, Proceedings of the *Heat Transfer and Fluid Flow in Microscale III* Conference, Hilton Whistler, BC, Canada, ECI international, 2008

Scale-up Principle: Same Residence Time

G1 Case : Reactor Volume = $6FM \times 8mI/FM = 48 mI$ Mixture flow = 150 mI/min= 9 I/h= $64.8 m^3/yr$ Residence time = $48 \div 150 = 0.32 min = 19.2 s$ G4 Case : Mixture flow = 2 160 m³/yr = 300 l/h = 6 000 ml/min Residence time = 19,2 s = 0,32 minInternal V =0,32 x 6000 = 1920 ml # of FMs in reactor = $1920 \div 250 = 8$

Scale-up from G1 to G4 and numbering-up

Yearly throughput: 5 000 t/y Yearly production: 2 200 t/y 2 G4 reactors in parallel Production increase versus lab : 100 time higher

10 minutes after start-up , the product was on specs (purity > 99,6%)

Presentation Outline

- 1. Introduction
- 2. Seamless Scale-Up

3. Industrial Examples

- 4. The Challenge of Solid handling
- 5. Outlook

Seamless Scale-Up from G1 (80 t/y) to G3 (1000 t/y)

Installation in Shandong, China (2013)

Yield of G1 and G3

CORNING | Advanced-Flow™ Reactors

G4 SiC industrial installation in Jiangsu, China (2012)

More and more production cases in various chemistry fields

Fine Chemistry Production on G4

API Production on G1

Continuous production of fine chemicals is real : Seamless scale-up from G1 to G4

- Scaled flow up by >25 times from G1 to G4
- 1st sample fully met product specs (2014.1)
- □ Same yield (99.8%)
 - achieved in G1 and G4
- Manpower reduced 70%

Seamless Scale up from G1 to G4 : Significantly changes equipment layout and safety management

Angelini Pharma G4 reactor system for Active Pharmaceutical Ingredient (API) production

- Development done with a G1 SiC reactor
- Seamless scale-up to a G4 size reactor
- Installation of a G4 reactor with related dosing lines
- ATEX and FDA compliance requirement
- Timeline from first talk to chemistry running in G4: less than 2 years.

Anupam G4 reactor system for specialty chemistry production

- Installation of a G4 reactor with related dosing lines
- Continuous manufacturing of products where difficult chemistries can be manufactured in a safer and more sustainable manner

*Pictures are a courtesy of ARIL (India)

From lab-scale to pilot/industrial-scale

G1 Corning reactor \rightarrow G4 Corning reactor

Corning AFR seamless scale-up principle: Keep only residence time constant, assuming same mixing and heat exchange properties are provided by this technology

Test at pilot/industrial scale by using a G4 reactor:

 \Rightarrow 8 plates of G4 reactor \rightarrow achieve 1/3 of the industrial productivity

To achieve the required industrial production: add plates (ΔP < 18 bar) and numbering-up

LABORATOIRE LEPP REACTIONS ET GENIE DES PROCEDES

Multipurpose industrial flow system in a GMP and FDA inspected API manufacturing plant

- 3 fully automated pumping units Atex compliant
- I industrial G4 Corning reactor (SiC)
- 1 Heating and cooling capacity from +200°C to -60°C

<u>Outcome</u>

- Low temperature reaction not scalable in batch
- 10 industrial batches of API intermediate produced
- Smooth and Quick scale-up from Kilolab to Industrial scale
- COGS savings of more than 30% vs external sourcing

Production Plant Installations

Solutions for Green Continuous Manufacturing

Corning G4 reactor system with 2 dosing lines, 1 temperature zone control and DCS monitoring with a footprint of 15m²

CORNING | Advanced-Flow[™] Reactors

Presentation Outline

- 1. Introduction
- 2. Seamless Scale-Up
- 3. Industrial Examples

4. The Challenge of Solid handling

5. Outlook

Selective Hydrogenation

Reactor Size: G1

Ref: Chemistry Today • Vol 27 n 6 / November-December 2009

Selective Hydrogenation

Batch Process:

- significant catalyst reduction
- >98% conversion & selectivity
- Impurity profiles within specification

Grignard Reagent (RMgX) Preparation

- Better purity & solubility delivered for the final products comparing with "batch" process
- Generated Grignard reagents react with a variety of carbonyl derivatives

Particle Handling in Corning[®] AFR

- Corning Reactors can handle solids with a variety of particle sizes, solid types and loading.
- Enabling Solid/Liquid, Solid/Liquid/Gas application (e.g. heterogenous catalytic hydrogenation, diazo dye, etc.)

Slurry type	Particle size (μm)	Solid loading	Slurry Hydrodynamics
Pd/C	30-50	2.5 g/L	OK
Silica beads	63-200	2.5 g/L	Ok
Silica beads	63-200	20 g/L	OK
Organics*	<50	500 g/L	ОК
Diazo*	< 50	0,2 M	ОК

*Based on typical values and experiments. Other conditions or products than tested should be validated by preliminary tests

- NiTech DN15 Lite
- COBR : Continuous
 Oscillatory Baffled reactor
- Pressure: max 2 bar
- Temperature: max 100°C
- Materials: Borosilicate glass and PTFE
- 3 thermostats
- 1 peristaltic pump

• Reactor G1 6FM

- Final Parameters
 - Total G1 flow of 20 ml/min
 - Water flow of 30ml/min
 - Temperature gradient 50°C/30°C/15°C (2/3/3 tubes)
 - Frequency 1.5 Hz, amplitude 35mm
- Full conversion and cristallisation yield 60% (not optimized)

Presentation Outline

- 1. Introduction
- 2. Seamless Scale-Up
- 3. Industrial Examples
- 4. The Challenge of Solid handling
- **5.** Outlook

Concluding Remarks

Corning Advanced-Flow Reactors provide

- High Mass transfer
- High Volumetric Heat transfer
- Seamless Scale-up

• Corning Advanced-Flow Reactors deliver

- High performance reactors
- Turn key solution with the required auxiliaries
- Customised solution to fit individual needs
- Corning Advanced-Flow Reactors offer
 - Dedicated support to customers all over the world
 - Technical data obtained by a dedicated R&D team
 - Solutions for customers to move faster to production

What is new? The AFR[®] Lab Reactor

A complete Plug and Play Lab System (reactor + auxiliaries)

CORNING

Ready to start & easy to use

1

-

CORNING

Being seamless scalable with AFR[®] products

AFR[®] Lab Reactor with Lab Photo Reactor add on

Thank you for your attention

Questions ?

CORNING | Advanced-Flow™ Reactors

© 2017 Corning Incorporated 46

Advanced-Flow[™] Reactor Technologies www.corning.com/reactors

THE FUTURE FLOWS THROUGHCORNING® ADVANCED-FLOW™ REACTORS

CORNING